Generator-Inverting Group Automorphisms

Nigel Boston

University of Wisconsin

September 2, 2016
Definition of GI-Automorphism

Let G be a group. Suppose $\sigma \in \text{Aut}(G)$ satisfies $\sigma^2 = 1$. Let $X = \{ g \in G : \sigma(g) = g^{-1} \}$. Call σ a **GI-automorphism** of G if $\langle X \rangle = G$.

Trivial Examples:
1. If G is generated by elements of order 2, then $1 \in \text{Aut}(G)$ is a GI-automorphism.
2. If G is abelian, then $x \mapsto x^{-1}$ defines a GI-automorphism.
Suppose $\sigma \in \text{Aut}(G)$ is a GI-automorphism. Then $H := G \rtimes \langle \sigma \rangle$ defines the corresponding **GI-extension**.

Equivalently, a GI-extension of G is a group containing G with index 2 and generated by involutions outside G.

Examples:

(1) If $\sigma = 1 \in \text{Aut}(G)$ is a GI-automorphism, then the corresponding GI-extension $\cong G \times C_2$.

(2) If G is abelian and $\sigma : x \mapsto x^{-1}$, then the GI-extension is $\text{Dih}(G)$.

(3) A_5 has 2 GI-extensions, $A_5 \times C_2$ and S_5.
(1) Let \(M \) be a closed orientable irreducible 3-manifold and \(G = \pi_1(M) \). Thurston asked if \(G \) has a GI-automorphism.

Results:

If \(M \) is hyperbolic and \(G \) is 2-generated, then the answer is yes by Jorgensen’s construction (if \(G = \langle A, B \rangle \), then let \(\sigma \) be conjugation by \(AB - BA \in PGL(2, \mathbb{C}) \)).

Boileau-Weidmann (2008): if \(M \) is a graph manifold and \(G \) is 2-generated, then \(G \) has a GI-automorphism if and only if \(M \) has Heegaard genus 2.
(2) Let K be a quadratic number field and L/K be an unramified extension, Galois over \mathbb{Q}. Then the inertia subgroups of $\text{Gal}(L/\mathbb{Q})$ all have order 2, lie outside $\text{Gal}(L/K)$, and by Minkowski generate $\text{Gal}(L/\mathbb{Q})$.

Thus $\text{Gal}(L/\mathbb{Q})$ is a GI-extension of $\text{Gal}(L/K)$.

(3) Groups on Wil Cocke’s poster have no GI-automorphism.
First Results

(1) The smallest groups with no GI-automorphism are the Frobenius groups of order 20 and 21.

(2) The Frobenius group with kernel \(\mathbb{F}_q^+\), of characteristic \(p\), and complement cyclic of order \(d\) has a GI-automorphism if and only if there exists \(\ell\) such that \(p^\ell \equiv -1 \pmod{d}\) (Alberts).

(3) There are infinitely many 2-groups with no GI-automorphism (B, Leedham-Green).

(4) If \(G\) is a 2-generated 2-group, then it has at most one GI-extension.

(5) Since “most” \(p\)-groups have automorphism group a \(p\)-group, if \(p\) is odd, these groups do not have a GI-automorphism.
Suppose p is an odd prime.
Let $c_p = \prod_{n \geq 1} (1 - p^{-n})$.
If G is an abelian p-group, set $\text{Meas}_{\text{CL}}(G) := c_p / |\text{Aut}(G)|$.
This defines a probability measure on the set of abelian p-groups.

Cohen and Lenstra (1983) conjectured that the proportion of imaginary quadratic K whose maximum unramified abelian p-extension has Galois group G, is $\text{Meas}_{\text{CL}}(G)$.
Suppose p is an odd prime and K imaginary quadratic. The Galois group G of the maximum unramified p-extension (its p-tower group) is a (possibly infinite) pro-p group satisfying

1. G has a GI-automorphism;
2. $d(G) = r(G)$;
3. G has finite abelianization.

These properties define a **Schur σ-group**.

The p-class c quotient of G, for any c and any Schur σ-group G, is called a **Schur σ-quotient**.
Suppose G has a GL-automorphism σ.
Let $\text{Aut}_\sigma(G)$ denote the group of σ-equivariant automorphisms of G, i.e. the centralizer in $\text{Aut}(G)$ of σ.
Fix a finite Schur σ-group G.
Set $\text{Meas}_{BBH}(G) := c_p/|\text{Aut}_\sigma(G)|$.
Meas_{BBH} defines a non-discrete measure on certain pro-p groups.

B-Bush-Hajir conjecture that the proportion of imaginary quadratic K whose p-tower group is isomorphic to G, is $\text{Meas}_{BBH}(G)$.

Meas_{CL}(G) is the proportion of \(d \)-tuples of relators, taken from the free abelian pro-\(p \) group of rank \(d \), that present \(G \).

Meas_{BBH}(G) is the proportion of \(d \)-tuples of relators, inverted by \(\sigma \) and taken from the free pro-\(p \) group of rank \(d \), that present \(G \).

Likewise, given a \(p \)-group \(G \) of \(p \)-class \(c \), we can ask for the proportion of \(d \)-tuples taken from a free pro-\(p \) group of \(p \)-class \(c \) and rank \(d \) that are inverted by \(\sigma \) and present \(G \).

This yields measures on Schur \(\sigma \)-quotients. The following (partial) tree gives some for \(d = 2 \). The top group has order 27 and 3-class 2 and each group connects down to its Schur children (descendants of 3-class one more).
Moments

There is data in support of these heuristics, but other results too. If H is a finite p-group having a GI-automorphism σ, then its corresponding moment is defined to be the expected number of σ-equivariant surjections from G to H, where G is the p-tower group of K as K ranges through imaginary quadratic fields.

Theorem (B-Wood)

For every H the corresponding moment is 1. Moreover this property characterizes the measure.

Theorem (B-Wood)

A function field version of this holds.

Indeed, moments for any group H of odd order come out as 1.
Open Question 1

By Ledermann-Neumann, there are finitely many finite groups G with a given $\text{Aut}(G)$.

Question 1 Are there finitely many pairs (G, σ), where G is a finite group with GI-automorphism σ (up to conjugation), with a given $\text{Aut}_\sigma(G)$?

This would be helpful in understanding Meas^{BBH}.
Infinite Groups with Nonzero Measure?

Compare with the following situation.

Let F be free pro-2 on 3 generators. Let $r \in \Phi(F)$.

Varying r yields 3-generator 1-relator pro-2 groups.

Something surprising happens. For proportion $21/64$ of the choices for r, the group presented is the same group \(< x, y, z \mid x^y = x^3 z^2 > \).

Question 1 addresses whether any infinite Schur σ-group has nonzero measure. Note that Fontaine-Mazur says that no infinite quotient of a p-tower group is analytic.
Discussion of Open Question 1

It is easy to see that 2 choices of \((G, \sigma)\) yield \(\text{Aut}_\sigma(G)\) of order 1. It is a small exercise to see that 4 choices of \((G, \sigma)\) yield \(\text{Aut}_\sigma(G)\) of order 2.

There are apparently 13, 8, 47, 3, 42 choices of \((G, \sigma)\) with \(\text{Aut}_\sigma(G)\) of order 4, 6, 8, 10, 12 respectively.

Could \(\text{Aut}_\sigma(G)\) be a Klein 4-group infinitely often? For instance, there are infinitely many 2-groups \(A\) of maximal class possessing an involution \(\sigma\) with centralizer a Klein 4-group. Note, however, that the only 2-group of maximal class that is an automorphism group, is the dihedral group of order 8.
The second result with Wood suggests the following question:

Question 2 Does there exist a group G of odd order with two nonconjugate GI-automorphisms?

I checked this for all groups of order < 2000 (no examples).

Note that if G is a p-group, then since the kernel from $\text{Aut}(G)$ to $\text{Aut}(G/\Phi(G))$ is a p-group, any two GI-automorphisms of G are conjugate by Schur-Zassenhaus (p odd).
Open Question 3

Let G be a d-generator p-group (p odd).
Let F be the free group on d generators, x_1, \ldots, x_d.
Let τ be the GI-automorphism of F given by $x_i \mapsto x_i^{-1}$.

There are finitely many normal subgroups of F with quotient isomorphic to G and the orbits of τ on this set have size 1 or 2.

We say that G possesses the **Kernel Invariance Property** (KIP) if all the orbits have the same size.

Question 3 Does KIP hold for every Schur σ-group and every Schur σ-quotient?
Discussion of Open Question 3

For a group $G/P_c(G)$, its pMultiplicatorRank minus NuclearRank is at most $r(G)$.

The smallest groups failing KIP are SmallGroup(243,i) for $i = 51, \ldots, 55$.

These have 3 generators and pMultiplicatorRank minus NuclearRank equal to 6.

If one is $G/P_c(G)$, then the corresponding G has $d(G) = 3$ and $r(G) \geq 6$ and so cannot be a Schur σ-group.

I checked 200 Schur σ-groups of order up to 3^{19} and their Schur σ-quotients and found they all satisfied KIP.